Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Clin Invest ; 134(9)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512401

ABSTRACT

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Subject(s)
Dietary Carbohydrates , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolism , Humans , Mice , Animals , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , Dietary Carbohydrates/metabolism , Female , Male , Dietary Fiber/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestines/microbiology
2.
Nature ; 626(8000): 859-863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326609

ABSTRACT

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Subject(s)
Acyltransferases , Amidohydrolases , Amines , Bile Acids and Salts , Biocatalysis , Gastrointestinal Microbiome , Humans , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amines/chemistry , Amines/metabolism , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cohort Studies , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gastrointestinal Microbiome/physiology , Ligands , Pregnane X Receptor/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Infant , Cell Culture Techniques
3.
Microbiome ; 12(1): 31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383483

ABSTRACT

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Humans , Female , Male , HIV Infections/drug therapy , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Aging , Bacteria/genetics , Inflammation/microbiology , Anti-Inflammatory Agents
4.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Article in English | MEDLINE | ID: mdl-37739064

ABSTRACT

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Subject(s)
Enterobacteriaceae , Inflammatory Bowel Diseases , Animals , Humans , Enterobacteriaceae/metabolism , Dysbiosis , Inflammatory Bowel Diseases/microbiology , Carnitine/metabolism , Fatty Acids/metabolism , Escherichia coli , Biomarkers
5.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961645

ABSTRACT

Background: People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results: Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions: We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.

6.
J Cyst Fibros ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37813785

ABSTRACT

BACKGROUND: Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS: Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS: Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS: The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.

7.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37292978

ABSTRACT

Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.

8.
Foods ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297350

ABSTRACT

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

9.
Sci Immunol ; 8(83): eade2335, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37235682

ABSTRACT

The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.


Subject(s)
IgA Deficiency , Humans , Child , Mice , Animals , Immunoglobulin A, Secretory , Immunoglobulin M , Homeostasis
10.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361763

ABSTRACT

The consumption of probiotics is widely encouraged due to reports of their positive effects on human health. In particular, Lacticaseibacillus rhamnosus strain GG (LGG) is an approved probiotic that has been reported to improve health outcomes, especially for gastrointestinal disorders. However, how LGG cooperates with the gut microbiome has not been fully explored. To understand the interaction between LGG and its ability to survive and grow within the gut microbiome, this study introduced LGG into established microbial communities using an in vitro model of the colon. LGG was inoculated into the simulated ascending colon and its persistence in, and transit through the subsequent transverse and descending colon regions was monitored over two weeks. The impact of LGG on the existing bacterial communities was investigated using 16S rRNA sequencing and short-chain fatty acid analysis. LGG was able to engraft and proliferate in the ascending region for at least 10 days but was diminished in the transverse and descending colon regions with little effect on short-chain fatty acid abundance. These data suggest that the health benefits of the probiotic LGG rely on its ability to transiently engraft and modulate the host microbial community.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Probiotics , Humans , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile
12.
Sci Immunol ; 7(76): eabn3127, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35857619

ABSTRACT

The baseline composition of T cells directly affects later response to pathogens, but the complexity of precursor states remains poorly defined. Here, we examined the baseline state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in unexposed individuals. SARS-CoV-2-specific CD4+ T cells were identified in prepandemic blood samples by major histocompatibility complex (MHC) class II tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2-specific T cells that expressed memory phenotype markers. Integrated phenotypic analyses demonstrated diverse preexisting memory states that included cells with distinct polarization features and trafficking potential to barrier tissues. T cell clones generated from tetramer-labeled cells cross-reacted with antigens from commensal bacteria in the skin and gastrointestinal tract. Direct ex vivo tetramer staining for one spike-specific population showed a similar level of cross-reactivity to sequences from endemic coronavirus and commensal bacteria. These data highlight the complexity of precursor T cell repertoire and implicate noninfectious exposures to common microbes as a key factor that shapes human preexisting immunity to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Immunologic Memory , Spike Glycoprotein, Coronavirus , T-Lymphocytes
13.
Gut Microbes ; 14(1): 2083417, 2022.
Article in English | MEDLINE | ID: mdl-35658830

ABSTRACT

Complications of short bowel syndrome (SBS) include malabsorption and bacterial overgrowth, requiring prolonged dependence on parenteral nutrition (PN). We hypothesized that the intolerance of whole food in some SBS patients might be due to the effect of dietary fiber on the gut microbiome. Shotgun metagenomic sequencing and targeted metabolomics were performed using biospecimens collected from 55 children with SBS and a murine dietary fiber model. Bioinformatic analyses were performed on these datasets as well as from a healthy human dietary intervention study. Compared to healthy controls, the gut microbiota in SBS had lower diversity and increased Proteobacteria, a pattern most pronounced in children on PN and inversely correlated with whole food consumption. Whole food intake correlated with increased glycoside hydrolases (GH) and bile salt hydrolases (BSH) with reduced fecal conjugated bile acids suggesting that dietary fiber regulates BSH activity via GHs. Mechanistic evidence supporting this notion was generated via fecal and plasma bile acid profiling in a healthy human fiber-free dietary intervention study as well as in a dietary fiber mouse experiment. Gaussian mixture modeling of fecal bile acids was used to identify three clinically relevant SBS phenotypes. Dietary fiber is associated with bile acid deconjugation likely via an interaction between gut microbiota BSHs and GHs in the small intestine, which may lead to whole food intolerance in patients with SBS. This mechanism not only has potential utility in clinical phenotyping and targeted therapeutics in SBS based on bile acid metabolism but may have relevance to other intestinal disease states.


Subject(s)
Gastrointestinal Microbiome , Amidohydrolases/metabolism , Animals , Bile Acids and Salts , Dietary Fiber , Gastrointestinal Microbiome/physiology , Humans , Mice
14.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Article in English | MEDLINE | ID: mdl-35383853

ABSTRACT

Environmental pH is a critical parameter for maintenance of the gut microbiota. Here, the impact of pH on the gut microbiota luminal and mucosal community structure and short chain fatty acid (SCFA) production was evaluated in vitro, and data compiled to reveal a donor-independent response to an increase or decrease in environmental pH. The results found that raising environmental pH significantly increased luminal community richness and decreased mucosal community evenness. This corresponded with an increased abundance of Ruminococcaceae Ruminococcus and Erysipelotrichaceae Erysipelatoclostridium, and a decreased abundance of Coriobacteriaceae Collinsella and Enterobacteriaceae Shigella for both the luminal and mucosal communities. Total SCFA levels were significantly higher, primarily due to an increase in acetic and 2-methylbutanoic acids. Lowering pH decreased luminal community evenness and decreased mucosal community evenness and richness. This corresponded with an increased abundance of Lachnospiraceae Enterocloster, Veillonellaceae Megasphaera, Veillonellaceae Sporomusa, Erysipelotrichaceae Eubacterium, and Alcaligenaceae Sutterella, and decreased abundance of Odoribacteraceae Butyricimonas, Fusobacteriaceae Fusobacterium, Veillonellaceae Phascolarctobacterium, and multiple Enterobacteriaceae species for both the luminal and mucosal communities. Total SCFA levels were significantly lower, with an observed drop in acetic and propionic acids, and increased butyric and valeric acids. Taken together, these results indicate that alterations to environmental pH can modulate the gut microbiota community structure and function, and some changes may occur in a donor-independent manner.


Subject(s)
Gastrointestinal Microbiome , Bacteroidetes , Fatty Acids, Volatile , Feces/microbiology , Firmicutes , Gastrointestinal Microbiome/physiology , Hydrogen-Ion Concentration
15.
J Crohns Colitis ; 16(8): 1281-1292, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35211723

ABSTRACT

BACKGROUND AND AIMS: Perianal fistulising disease can affect up to 25% of patients with Crohn's disease [CD] and lead to significant morbidity. Although the role of the gut microbiota in inflammatory bowel disease [IBD] has been increasingly recognised, its role in fistula development has scarcely been studied. Here, we aimed to define the microbial signature associated with perianal fistulising CD in children. METHODS: A prospective observational study including children age 6-18 years with a diagnosis of perianal fistulising CD was conducted. Stool samples and rectal and perianal fistula swabs were collected. Stool samples and rectal swabs from children with CD without perianal disease and healthy children were included as comparison. Whole shotgun metagenomic sequencing was performed. RESULTS: A total of 31 children [mean age 15.5 ± 3.5 years] with perianal CD were prospectively enrolled. The fistula-associated microbiome showed an increase in alpha diversity and alteration in the abundance of several taxa compared with the rectal- and faecal-associated microbiome with key taxa belonging to the Proteobacteria phylum. Genes conferring resistance to the clinically used antibiotic regimen ciprofloxacin and metronidazole were found in the three sample types. In comparison with children without the perianal phenotype [N = 36] and healthy controls [N = 41], the mucosally-associated microbiome of children with perianal CD harboured a reduced butyrogenic potential. Linear discriminant analysis identified key taxa distinguishing the rectal mucosally-associated microbiome of children with perianal CD from children without this phenotype. CONCLUSIONS: The microbial community within CD-related anorectal fistula is compositionally and functionally unique. Taken together, these findings emphasise the need to better understand the ecosystem of the fistula milieu to guide development of novel microbiome-based strategies in this CD phenotype.


Subject(s)
Crohn Disease , Rectal Fistula , Ciprofloxacin , Crohn Disease/complications , Ecosystem , Humans , Rectal Fistula/etiology , Treatment Outcome
16.
Pediatr Blood Cancer ; 69(1): e29384, 2022 01.
Article in English | MEDLINE | ID: mdl-34709713

ABSTRACT

BACKGROUND: The contribution of the gastrointestinal tract microbiome to outcomes after allogeneic hematopoietic cell transplantation (HCT) is increasingly recognized. Investigations of larger pediatric cohorts aimed at defining the microbiome state and associated metabolic patterns pretransplant are needed. METHODS: We sought to describe the pretransplant stool microbiome in pediatric allogenic HCT patients at four centers. We performed shotgun metagenomic sequencing and untargeted metabolic profiling on pretransplant stool samples. Samples were compared with normal age-matched controls and by clinical characteristics. We then explored associations between stool microbiome measurements and metabolite concentrations. RESULTS: We profiled stool samples from 88 pediatric allogeneic HCT patients, a median of 4 days before transplant. Pretransplant stool samples differed from healthy controls based on indices of alpha diversity and in the proportional abundance of specific taxa and bacterial genes. Relative to stool from healthy patients, samples from HCT patients had decreased proportion of Bacteroides, Ruminococcaeae, and genes involved in butyrate production, but were enriched for gammaproteobacterial species. No systematic differences in stool microbiome or metabolomic profiles by age, transplant indication, or hospital were noted. Stool metabolites demonstrated strong correlations with microbiome composition. DISCUSSION: Stool samples from pediatric allogeneic HCT patients demonstrate substantial dysbiosis early in the transplant course. As microbiome disruptions associate with adverse transplant outcomes, pediatric-specific analyses examining longitudinal microbiome and metabolome changes are imperative to identify causal associations and to inform rational design of interventions.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Microbiota , Child , Feces , Humans , Metabolome
17.
Viruses ; 13(8)2021 08 08.
Article in English | MEDLINE | ID: mdl-34452432

ABSTRACT

Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Dysbiosis/etiology , Gastrointestinal Microbiome/drug effects , Inflammation/blood , Inflammation/etiology , Intestinal Mucosa/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Animals , Anti-Retroviral Agents/adverse effects , Bacteria/classification , Bacteria/drug effects , Bacteria/immunology , Bacteria/isolation & purification , Chronic Disease/drug therapy , Dysbiosis/immunology , Female , Intestinal Mucosa/pathology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/drug effects
18.
mBio ; 12(4): e0177721, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34399607

ABSTRACT

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Lung/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Anelloviridae/classification , Anelloviridae/genetics , Anelloviridae/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/pathology , Female , Humans , Lymphocyte Count , Male , Microbiota , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index
19.
medRxiv ; 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33851179

ABSTRACT

Rationale: Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective: To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements: We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions: The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

20.
Appl Microbiol Biotechnol ; 105(8): 3353-3367, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33765200

ABSTRACT

The importance of the gut microbiota in human health and disease progression makes it a target for research in both the biomedical and nutritional fields. To date, a number of in vitro systems have been designed to recapitulate the gut microbiota of the colon ranging in complexity from the application of a single vessel to cultivate the community in its entirety, to multi-stage systems that mimic the distinct regional microbial communities that reside longitudinally through the colon. While these disparate types of in vitro designs have been employed previously, information regarding similarities and differences between the communities that develop within was less defined. Here, a comparative analysis of the population dynamics and functional production of short-chain fatty acids (SCFAs) was performed using the gut microbiota of the same donor cultured using a single vessel and a 3-stage colon system. The results found that the single vessel communities maintained alpha diversity at a level comparable to the distal regions of the 3-stage colon system. Yet, there was a marked difference in the type and abundance of taxa, particularly between families Enterobacteriaceae, Bacteroidaceae, Synergistaceae, and Fusobacteriaceae. Functionally, the single vessel community produced significantly less SCFAs compared to the 3-stage colon system. These results provide valuable information on how culturing technique effects gut microbial composition and function, which may impact studies relying on the application of an in vitro strategy. This data can be used to justify experimental strategy and provides insight on the application of a simplified versus complex study design. KEY POINTS : • A mature gut microbiota community can be developed in vitro using different methods. • Beta diversity metrics are affected by the in vitro culturing method applied. • The type and amount of short-chain fatty acids differed between culturing methods.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Colon , Fatty Acids, Volatile , Humans , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...